Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
International Journal of Applied Pharmaceutics ; 15(3):1-11, 2023.
Article in English | EMBASE | ID: covidwho-20242785

ABSTRACT

Recent advancements in nanotechnology have resulted in improved medicine delivery to the target site. Nanosponges are three-dimensional drug delivery systems that are nanoscale in size and created by cross-linking polymers. The introduction of Nanosponges has been a significant step toward overcoming issues such as drug toxicity, low bioavailability, and predictable medication release. Using a new way of nanotechnology, nanosponges, which are porous with small sponges (below one microm) flowing throughout the body, have demonstrated excellent results in delivering drugs. As a result, they reach the target place, attach to the skin's surface, and slowly release the medicine. Nanosponges can be used to encapsulate a wide range of medicines, including both hydrophilic and lipophilic pharmaceuticals. The medication delivery method using nanosponges is one of the most promising fields in pharmacy. It can be used as a biocatalyst carrier for vaccines, antibodies, enzymes, and proteins to be released. The existing study enlightens on the preparation method, evaluation, and prospective application in a medication delivery system and also focuses on patents filed in the field of nanosponges.Copyright © 2023 The Authors.

2.
International Journal of Medical Engineering and Informatics ; 15(2):131-138, 2022.
Article in English | EMBASE | ID: covidwho-2318405

ABSTRACT

The COVID-19 outbreak has fashioned to severe threat to each and every individual in social and economic aspects in the country. This required improved wisdom to know how it is different and dominant, to diagnose and determine effective vaccines to avoid the transmission of these deadly causative agents. From this review, the probable property of these deadly transmissible viruses is related to that of SARS-CoV-2 as a fright zone of viruses. It also provides some sparks about effective and accurate diagnosis and treatment strategies. The effective management and control of panic zone of virus (PZV) and SARS-CoV-2 are more important to reduce the pandemic situation.Copyright © 2023 Inderscience Enterprises Ltd.

3.
Environmental Science and Pollution Research ; 29(41):61547-61766, 2022.
Article in English | CAB Abstracts | ID: covidwho-2312030

ABSTRACT

These proceedings contain 14 papers that are focused on ecosystems and its process, discussed on six different themes affecting the ecosystem: (1) natural resource and biodiversity, (2) society, economy, and sustainable development, (3) climate change, (4) environmental pollution and bioremediation, (5) new technologies, energy, and environment, and (6) health, COVID-19, pandemic, and their global effects.

4.
J Environ Sci Health A Tox Hazard Subst Environ Eng ; 58(7): 694-705, 2023.
Article in English | MEDLINE | ID: covidwho-2317443

ABSTRACT

The mismanagement of consumer-discarded plastic waste (CDPW) has raised global environmental concerns about climate change. The COVID-19 outbreak has generated ∼1.6 million tons of plastic waste per day in the form of personal protective equipment (masks, gloves, face shields, and sanitizer bottles). These plastic wastes are either combustible or openly dumped in aquatic and terrestrial environments. Open dumping upsurges emerging contaminants like micro-nano plastics (MNPs) that directly enter the ecosystem and cause severe impacts on flora and fauna. Therefore, it has become an utmost priority to determine sustainable technologies that can degrade or treat MNPs from the environment. The present review assesses the sources and impacts of MNPs, various challenges, and issues associated with their remediation techniques. Accordingly, a novel sustainable circular model is recommended to increase the degradation efficiency of MNPs using biochemical and biological methods. It is also concluded that the proposed model does not only overcome environmental issues but also provides a sustainable secondary resource to meet the sustainable development goals (SDGs).


Subject(s)
COVID-19 , Plastics , Humans , Microplastics , Ecosystem , COVID-19/epidemiology , COVID-19/prevention & control
5.
Environ Res ; 229: 115892, 2023 07 15.
Article in English | MEDLINE | ID: covidwho-2296404

ABSTRACT

The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Humans , Biocatalysis , Bioaccumulation , Pandemics , Water , Water Pollutants, Chemical/analysis , Biodegradation, Environmental
6.
Energies ; 16(3):1446, 2023.
Article in English | ProQuest Central | ID: covidwho-2289096

ABSTRACT

The increasing concentration of anthropogenic CO2 in the atmosphere is causing a global environmental crisis, forcing significant reductions in emissions. Among the existing CO2 capture technologies, microalgae-guided sequestration is seen as one of the more promising and sustainable solutions. The present review article compares CO2 emissions in the EU with other global economies, and outlines EU's climate policy together with current and proposed EU climate regulations. Furthermore, it summarizes the current state of knowledge on controlled microalgal cultures, indicates the importance of CO2 phycoremediation methods, and assesses the importance of microalgae-based systems for long-term storage and utilization of CO2. It also outlines how far microalgae technologies within the EU have developed on the quantitative and technological levels, together with prospects for future development. The literature overview has shown that large-scale take-up of technological solutions for the production and use of microalgal biomass is hampered by economic, technological, and legal barriers. Unsuitable climate conditions are an additional impediment, forcing operators to implement technologies that maintain appropriate temperature and lighting conditions in photobioreactors, considerably driving up the associated investment and operational costs.

7.
Journal of Environmental Engineering (United States) ; 149(6), 2023.
Article in English | Scopus | ID: covidwho-2248079

ABSTRACT

In recent years, the emergence of COVID-19 has created disastrous health effects worldwide. Doxycycline, a member of the tetracycline group, has been prescribed as a treatment companion for attending this catastrophe. Due to extensive use and high solubility, a significant amount of un-metabolized doxycycline has been found to reach water bodies within a short time, and consumption of this water may lead to the development of fatal resistance in organisms and create health problems. Therefore, it has become necessary to develop suitable technologies from a geoenvironmental point of view to remove these unwanted antibiotics from wastewater. In this context, locally obtainable silty-sandy soil was explored as a low-cost material in a constructed wetland with Chrysopogon zizanioides (vetiver sp.) for phytoremediation to mitigate doxycycline spiked wastewater. The obtained soil hydraulic conductivity was 1.63×10-7 m/s. Batch adsorption tests conducted on silty-sandy soil, vetiver leaf, and vetiver root provided maximum removal efficiencies of 90%, 72%, and 80% percent, respectively, at optimal sorbent doses of 10 g/L, 17 g/L, and 16 g/L, and contaminant concentrations of 25 mg/L, 20 mg/L, and 23 mg/L, with a 30-min time of contact. The Freundlich isotherm was the best fit, indicative of sufficient sorption capacity of all the adsorbents for doxycycline. The best match in the kinetic research was pseudo-second-order kinetics. A one dimensional vertical column test with the used soil on doxycycline revealed a 90% breakthrough in 24 h for a soil depth of 30 mm. Studies on a laboratory-scale wetland and numerically modeled yielded removal of around 92% by the selected soil and about 98% combined with Chrysopogon zizanioides for 25 mg/L of initial doxycycline concentration, which is considered quite satisfactory. Simulated results matched the laboratory tests very well. The study is expected to provide insight into remedies for similar practical problems. © 2023 American Society of Civil Engineers.

8.
Natural Products Journal ; 13(1):1.0, 2023.
Article in English | Scopus | ID: covidwho-2246401
9.
Natural Products Journal ; 13(1):1, 2023.
Article in English | EMBASE | ID: covidwho-2197767
10.
Curr Pharm Des ; 28(22): 1833-1842, 2022.
Article in English | MEDLINE | ID: covidwho-2197773

ABSTRACT

BACKGROUND: Genetically modified micro-organisms like bacteria, viruses, algae and fungi are novel approaches used in the field of healthcare due to better efficacy and targeted delivery in comparison to conventional approaches. OBJECTIVES: This review article focuses on the applications of genetically modified micro-organisms in the treatment of cancer, obesity and HIV infection. The gut microbiome causes metabolic disorders, however, the use of genetically modified bacteria alters the gut microbiota and delivers therapeutically effective drugs in the treatment of obesity. METHODS: Enhancement of the therapeutic activity of different micro-organisms is required for multiple treatments in cancer, diabetes, etc., by incorporating their fragments into the microbial filaments with the help of genetic modification approaches. Various methods like amelioration of NAPE synthesis, silica immobilization, polyadenylation and electrochemical are used to integrate the strain into the bacteria and engineer a live virus with a peptide. RESULTS: The development of novel microbial strains using genetic modifications over core strains offers higher precision, greater molecular multiplicity, better prevention from the degradation of microbes in atmospheric temperature and significant reduction of side effects for therapeutic applications. Moreover, genetically modified micro-organisms are used in multidisciplinary sectors like generation of electricity, purification of water, bioremediation process, etc., indicating the versatility and scope of genetically engineered microbes. CONCLUSION: The bioengineered micro-organisms with genetic modifications proved to be advantageous in various conditions like cancer, diabetes, malaria, organ regeneration, inflammatory bowel disease, etc. This article provides insight into various applications of genetically modified microbes in different sectors with their implementation for regulatory approval.


Subject(s)
Diabetes Mellitus , Gastrointestinal Microbiome , HIV Infections , Bacteria , Biotechnology , Humans , Obesity
11.
Management of Environmental Quality: An International Journal ; 2022.
Article in English | Web of Science | ID: covidwho-2018558

ABSTRACT

Purpose - The current study investigates the impact of the coronavirus disease 2019 (COVID-19) lockdown restrictions on air quality in an industrial town in Himachal Pradesh (HP) (India) and recommends policies and strategies for mitigating air pollution. Design/methodology/approach - The air quality parameters under study are particulate matter(10) (PM10), PM2.5, SO2 and NO2. One-way ANOVA with post-hoc analysis and non-parametric Kruskal-Wallis test, and multiple linear regression analysis are used to validate the data analysis results. Findings - The findings indicate that the lockdown and post-lockdown periods affected pollutant levels even after considering the meteorological conditions. Except for SO2, all other air quality parameters dropped significantly throughout the lockdown period. Further, the industrial and transportation sectors are the primary sources of air pollution in Paonta Sahib. Research limitations/implications - Future research should include other industrial locations in the state to understand the relationship between regional air pollution levels and climate change. The findings of this study may add to the discussion on the role of adopting clean technologies and also provide directions for future research on improving air quality in the emerging industrial towns in India. Originality/value - Very few studies have examined how the pandemic-induced lockdowns impacted air pollution levels in emerging industrial towns in India while also considering the confounding meteorological factors. [GRAPHICS] .

12.
Journal of Physics: Conference Series ; 2267(1):012125, 2022.
Article in English | ProQuest Central | ID: covidwho-1877006

ABSTRACT

Surfactants are the important class of amphiphilic species, which consists of both hydrophilic as well as hydrophobic part. They are characterized by some important properties like critical micelle concentration (CMC), charge, hydrophile-lypophile balance (HLB), aggregation, and chemical structure, which make them good emulsifying, dispersing and foaming agents. Presently, the global demand of the surfactants is on the peak due to their increased applications in detergents, paints, food emulsion, biotechnological processes, biosciences, pharmaceuticals, cosmetic products, etc. In order to prevent Corona pandemic disease, WHO and other regulatory authorities have recommended frequent use of soaps and sanitizers that makes surfactants an important class of species to be explored more in terms of their applications.

13.
Sustainability ; 14(5):2669, 2022.
Article in English | ProQuest Central | ID: covidwho-1742646

ABSTRACT

The water and soils pollution due to mercury emissions from mining industries represents a serious environmental problem and continuous risk to human health. Although many strategies have been designed for the recovery or elimination of this metal from environmental sources, microbial bioremediation has proven to be the most effective and environmentally friendly strategy and thus control heavy metal contamination. The main objective of this work, using native bacterial strains obtained from contaminated soils of the Peruvian region of Secocha, was to identify which of these strains would have growth capacity on mercury substrates to evaluate their adsorption behavior and mercury removal capacity. Through a DNA analysis (99.78% similarity) and atomic absorption spectrometry, the Gram-positive bacterium Zhihengliuella alba sp. T2.2 was identified as the strain with the highest mercury removal capacity from culture solutions with an initial mercury concentration of 162 mg·L−1. The removal capacity reached values close to 39.5% in a period of incubation time of 45 days, with maximum elimination efficiency in the first 48 h. These results are encouraging and show that this native strain may be the key to the bioremediation of water and soils contaminated with mercury.

14.
Abasyn Journal of Life Sciences ; 4(1):61-64, 2021.
Article in English | CAB Abstracts | ID: covidwho-1635067

ABSTRACT

The purpose of this study was to provide an overview of the effects of COVID-19 on macro-plastic pollution and to consider short-term and long-term scenarios for its possible environmental and human health consequences and to discuss possible strategies to address and overcome key challenges. It was emphasized that, whether or not they are involved in a healthy health crisis, future actions should reflect the balance between public health and environmental protection, as there is no doubt that they are interrelated with bioremediation and microbial metabolism in the presence of optimal environmental conditions. Bioremediation uses natural and psychological microorganisms to break down toxic and harmful substances aerobically and anaerobically. It can be handled by a mixed microbial consortium or pure microbial strains on site (in situ) or off site (in the case of case) Phyto therapy or even natural care. Nutrients suitable for impurities, especially petroleum hydrocarbons are researched technologies for us, for this a biotechnological approach designed for bioremediation and observation. COVID 19 Pandemic pushed the world into a new challenge of waste management. In general, physicochemical technologies are used, which allow for proper ecological biomedical processes. Some bacteria are mobile, feel the contamination, and move towards it to neutralize it. This review emphasizes on current pollution, which is result of COVID 19 pandemic, as people follow use and discard strategies for different things which is a threat to our environment.

15.
Agronomy ; 12(1):117, 2022.
Article in English | ProQuest Central | ID: covidwho-1638742

ABSTRACT

Pesticide treatment dramatically reduces crop loss and enhances agricultural productivity, promoting global food security and economic growth. However, owing to high accrual and persistent tendency, pesticides could create significant ecological consequences when used often. Lately, the perspective has transitioned to implementing biological material, environmentally sustainable, and economical strategies via bioremediation approaches to eradicate pesticides contaminations. Microalgae were regarded as a prominent option for the detoxification of such hazardous contaminants. Sustainable application and remediation strategies of pesticides pollutants in the agriculture system by microalgae from the past studies, and recent advancements were integrated into this review. Bibliometric strategies to enhance the research advancements in pesticide bioremediation by microalgae between 2010 and 2020 were implemented through critical comparative analysis of documents from Scopus and PubMed databases. As a result, this study identified a growing annual research trend from 1994 to 2020 (nScopus > nPubMed). Global production of pesticide remediation by microalgae demonstrated significant contributions from India (23.8%) and China (16.7%). The author’s keyword clustering was visualized using bibliometric software (VOSviewer), which revealed the strongest network formed by “microalgae”, “bioremediation”, “biodegradation”, “cyanobacteria”, “wastewater”, and “pesticide” as significant to the research topic. Hence, this bibliometric review will facilitate the future roadmap for many scholars and authors who were drawing attention to the burgeoning research on bioremediation of pesticides to counteract environmental impacts while maintaining food sustainability.

16.
J Fungi (Basel) ; 7(10)2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1480832

ABSTRACT

Human-made hydrocarbon-rich environments are important reservoirs of microorganisms with specific degrading abilities and pathogenic potential. In particular, black fungi are of great interest, but their presence in the environment is frequently underestimated because they are difficult to isolate. In the frame of a biodiversity study from fuel-contaminated sites involving 30 diesel car tanks and 112 fuel pump dispensers (52 diesel and 60 gasoline, respectively), a total of 181 black fungal strains were isolated. The long cold incubation (LCI) of water-suspended samples, followed by plating on Dichloran Rose Bengal Chloramphenicol Agar (DRBC), gave isolation yields up to six times (6.6) higher than those of direct plating on DRBC, and those of enrichment with a phenolic mix. The sequencing of ITS and LSU-rDNA confirmed the dominance of potentially pathogenic fungi from the family Herpotrichiellaceae and Exophiala xenobiotica. Moreover, other opportunistic species were found, including E. opportunistica, E. oligosperma, E. phaeomuriformis, and Rhinocladiella similis. The recurrent presence of E. crusticola, Knufia epidermidis, Aureobasidium melanogenum, Cladosporium spp., and Scolecobasidium spp. was also recorded. Interestingly, 12% of total isolates, corresponding to 50% of taxa found (16/32), represent new species. All the novel taxa in this study were isolated by LCI. These findings suggest that black fungal diversity in hydrocarbon-rich niches remains largely unexplored and that LCI can be an efficient tool for further investigations.

SELECTION OF CITATIONS
SEARCH DETAIL